

Contents lists available at ScienceDirect

Planetary and Space Science

journal homepage: www.elsevier.com/locate/pss

Can rapid loss and high variability of Martian methane be explained by surface H_2O_2 ?

R.V. Gough ^{a,*,1}, J.J. Turley ^{a,1}, G.R. Ferrell ^{a,1}, K.E. Cordova ^{a,1}, S.E. Wood ^{a,1}, D.O. DeHaan ^{a,1}, C.P. McKay ^b, O.B. Toon ^c, M.A. Tolbert ^a

^a Department of Chemistry and Biochemistry and Cooperative Institute for Research in Environmental Sciences (CIRES), 216 UCB, University of Colorado, Boulder, CO 80309, USA ^b NASA Ames Research Center, Mail Stop 245-3, Moffett Field, CA 94035, USA

^c Laboratory for Atmospheric and Space Physics (LASP) and Department of Atmospheric and Oceanic Sciences (ATOC), 392 UCB, University of Colorado, Boulder, CO 80309, USA

ARTICLE INFO

Article history: Received 1 March 2010 Received in revised form 28 July 2010 Accepted 20 September 2010 Available online 25 September 2010

Keywords: Mars Atmosphere Surface Oxidant Methane Viking

ABSTRACT

It has been reported by several groups that methane in the Martian atmosphere is both spatially and temporally variable. Gough et al. (2010) suggested that temperature dependent, reversible physical adsorption of methane onto Martian soils could explain this variability. However, it is also useful to consider if there might be chemical destruction of methane (and compensating sources) operating on seasonal time scales. The lifetime of Martian methane due to known chemical loss processes is long (on the order of hundreds of years). However, observations constrain the lifetime to be 4 years or less, and general circulation models suggest methane destruction must occur even faster (< 1 year) to cause the reported variability and rapid disappearance. The Martian surface is known to be highly oxidizing based on the Viking Labeled Release experiments in which organic compounds were quickly oxidized by samples of the regolith. Here we test if simulated Martian soil is also oxidizing towards methane to determine if this is a relevant loss pathway for Martian methane. We find that although two of the analog surfaces studied, TiO_2 H₂O₂ and JSC-Mars-1 with H₂O₂, were able to oxidize the complex organic compounds (sugars and amino acids) used in the Viking Labeled Release experiments, these analogs were unable to oxidize methane to carbon dioxide within a 72 h experiment. Sodium and magnesium perchlorate, salts that were recently discovered at the Phoenix landing site and are potential strong oxidants, were not observed to directly oxidize either the organic solution or methane. The upper limit reaction coefficient, α , was found to be $< 4 \times 10^{-17}$ for methane loss on TiO₂ · H₂O₂ and $< 2 \times 10^{-17}$ for methane loss on JSC-Mars-1 with H₂O₂. Unless the depth of soil on Mars that contains H₂O₂ is very deep (thicker than 500 m), the lifetime of methane with respect to heterogeneous oxidation by H_2O_2 is probably greater than 4 years. Therefore, reaction of methane with H_2O_2 on Martian soils does not appear to be a significant methane sink, and would not destroy methane rapidly enough to cause the reported atmospheric methane variability.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Since 2004, both ground-based and orbiter observations have indicated that there are trace amounts of methane (CH₄) in the Martian atmosphere (Formisano et al., 2004; Krasnopolsky et al., 2004; Geminale et al., 2008; Mumma et al., 2009; Fonti and Marzo, 2010). This is a difficult measurement to make due to the small amount of CH₄ on the planet and, in the case of groundbased observations, the possibility of telluric CH₄ contamination could add further uncertainty (Zahnle et al., 2010). However, the consistency in reported mixing ratios ($\sim 10-50$ ppbv) between measurements taken with different instruments and using different absorbance features has inspired confidence in the reported CH₄ observations. The source of this CH₄ is unknown, although possible sources include hydrothermal alteration of minerals (Lyons et al., 2005; Oze and Sharma, 2005; Atreya et al., 2007), CH₄ clathrate degassing or dissociation (Max and Clifford, 2000; Prieto-Ballesteros et al., 2006; Chastain and Chevrier, 2007; Madden et al., 2007; Chassefiere, 2009), or methanogenic bacteria (Boston et al., 1992; Weiss et al., 2000; Jakosky et al., 2003; Varnes et al., 2003; Krasnopolsky et al., 2004).

The only processes known to destroy Martian CH_4 are UV photolysis and gas phase oxidation. Together, these yield a CH_4 lifetime of several hundred years, significantly longer than either the vertical or horizontal mixing time (~10 days and ~0.5 years, respectively) (Krasnopolsky et al., 2004). Methane is thus

^{*} Corresponding author. Tel.: +1 303 492 1433; fax: +1 303 492 1149.

E-mail address: raina.gough@colorado.edu (R.V. Gough).

¹ Permanent address: Department of Chemistry and Biochemistry, University of San Diego, 5998 Alcalá Park, San Diego, CA 92110, USA.

^{0032-0633/\$ -} see front matter \circledcirc 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.pss.2010.09.018

expected to be well mixed; however, several groups have reported spatial and/or temporal variability of CH_4 in the Martian atmosphere (Formisano et al., 2004; Geminale et al., 2008; Mumma et al., 2009; Fonti and Marzo, 2010). This observed variability implies that additional processes are removing CH_4 from the atmosphere and also that strong, local CH_4 sources must be present on Mars today. Carefully constraining the Martian CH_4 sinks is important for constraining and quantifying the possible CH_4 sources.

Ground-based observations constrain the CH₄ lifetime to be less than 4 years (Mumma et al., 2009). However, recent theoretical work by Lefevre and Forget (2009) finds that the unknown loss must occur even more rapidly, on a timescale of ~200 days, in order to explain the observations of Mumma et al. (2009). If this is the case, the CH₄ loss is occurring about 600 times faster than gas phase oxidation by ·OH and O(¹D) or UV photolysis and would require a much stronger source than previously believed. Although there may be a rapid CH₄ sink on Mars, the mechanism of CH₄ loss, the exact removal rate, and the geographic location (or spatial homogeneity) of the removal process are still unknown.

One proposed CH_4 loss pathway is the dissociation of CH_4 by large-scale electric fields that result from convective dust activity (Farrell et al., 2006). However, it has recently been suggested that electric discharges may not occur during Martian dust saltation and therefore CH_4 dissociation is perhaps less significant than previously thought (Kok and Renno, 2009).

Alternatively, Gough et al. (2010) proposed that seasonal cycles of physical adsorption and desorption by the regolith, which is a reversible phenomena, could account for the observed CH₄ variability. However, theoretical work by Meslin et al. (this issue) suggests that the effect of this mechanism is likely to be small. Reasonable values for regolith albedo, thermal inertia, and specific surface area only result in atmospheric CH₄ variability on the order of a few %, although high surface area minerals such as zeolites can increase atmospheric CH₄ variability to greater than 5%. However, it is likely that there are more rapid processes removing CH₄ from the Martian atmosphere.

Heterogeneous oxidation of CH_4 by the Martian surface is a possible loss pathway that has been frequently proposed (Atreya et al., 2006; Lefevre and Forget, 2009; Mumma et al., 2009), but not yet experimentally investigated. It has been known since the Viking mission in the 1970s that the Martian regolith has the ability to oxidize organic compounds. The Labeled Release (LR) experiment onboard both Viking landers investigated the ability of the soil to oxidize a solution of ¹³C-labeled organic molecules into ¹³CO₂. Prior to launch, oxidation of the organic solution was a criteria for the discovery of life. However, it is now widely believed that a strong oxidant associated with the mineral grains, or perhaps the soil itself, was chemically reactive.

The species most frequently proposed to be the Martian soil oxidant is hydrogen peroxide (H_2O_2) (Huguenin et al., 1979; Hunten, 1979; Levin and Straat, 1981; Bullock et al., 1994; Zent and McKay, 1994). H_2O_2 could have arrived in the soil via a number of different processes or mechanisms. Following photochemical (Krasnopolsky, 1993) or electrostatic (Atreya et al., 2006; Delory et al., 2006) formation in the atmosphere, the H_2O_2 could diffuse through the subsurface where it could be protected from UV photolysis (Bullock et al., 1994). Alternatively, H_2O_2 could be formed in the soil by interaction of water (H_2O) with pyrite (Davila et al., 2008), olivine (Huguenin et al., 1979), or mechanically ground basaltic minerals (Hurowitz et al., 2007).

Several studies have shown that H_2O_2 is able to closely mimic the Viking LR results, especially when the molecule is complexed with or in the presence of a mineral surface. For example, Levin and Straat (1981) found that a 0.1 M H_2O_2 solution was able to oxidize organic compounds with the approximate kinetics measured by Viking. However, when a γ -Fe₂O₃/silica sand mixture is present, a much lower H₂O₂ concentration $(10^{-3}-10^{-2} \text{ M})$ was able to recreate the LR results. Quinn and Zent (1999) reported that H₂O₂ chemisorbed onto titanium dioxide (TiO₂ · H₂O₂) also has the ability to oxidize the organic compounds used in the LR experiment. TiO₂ · H₂O₂ was found to possess similar reactivity and thermal stability as the Martian soil studied by Viking.

Although H_2O_2 complexed with Martian soil may be able to rapidly oxidize organic compounds such as sugars and amino acids, it is unclear over what time scale oxidation of gas phase CH₄ could occur. In this work, we have experimentally studied the reaction of CH₄ with several oxidizing analogs. The analog materials studied were peroxide-modified titanium dioxide (TiO₂ · H₂O₂), JSC-Mars-1 with H₂O₂, and perchlorate salts (Na⁺ and Mg²⁺).

As mentioned above, Quinn and Zent (1999) discovered that H_2O_2 complexed with the anatase polymorph of TiO₂ was able to oxidize the Viking organic compounds to CO₂. It is also estimated that the regolith contains about 1% TiO₂ (Clark et al., 1977). As it is a suitable chemical analog of the putative soil oxidant on Mars, we chose to study the reactivity of TiO₂ · H₂O₂ toward CH₄.

JSC-Mars-1 is a palagonite, or weathered basalt, that is mineralogically amorphous although possibly microcrystalline (Murakami et al., 1989). The major elemental composition of JSC-Mars-1 as determined by X-ray fluorescence is as follows: 43.5% SiO₂, 23.3% Al₂O₃, 15.6% Fe₂O₃, 6.2% CaO, 3.4% MgO, 3.8%TiO₂, and 2.4% Na₂O (Allen et al., 1998). The exact mineralogies present, along with the nature of the active mineral surface, are not known; however, it is a common chemical and spectral analog for the Martian soil (Morris et al., 2003) and frequently used in laboratory studies of the Martian surface (Singer, 1982; Orenberg and Handy, 1992; Quinn and Orenberg, 1993). Therefore, we chose to study the ability of JSC-Mars-1 to oxidize CH₄ both in the presence and absence of H₂O₂.

Perchlorate salts were recently discovered at the Phoenix landing site at a concentration of ~0.5% (Hecht et al., 2009). The salt was detected in three samples originating from both the surface and shallow subsurface of the north polar landing site. The relevance of this measurement to the general planetary composition is not yet known, but the detection is potentially of interest to the global CH₄ cycle as perchlorate is often reported to be a strong oxidant. Although some have suggested that perchlorate would be fairly unreactive at cold Martian temperatures due to high energetic barriers (Hecht et al., 2009; Catling et al., 2010), the ability of perchlorate salts to oxidize CH₄ has not been investigated. Therefore, we studied the ability of sodium and magnesium perchlorate salts to directly oxidize CH₄. These specific cations (Na⁺ and Mg²⁺) are thought to be the dominant cations at the Phoenix landing site (Hecht et al., 2009).

In addition to the CH₄ studies, a separate series of experiments was performed in which the Viking organic compounds (alanine, glycine, formic acid, glycolic acid, and lactic acid) were added to each oxidizing analog. These experiments were performed in order to compare the results of the Viking LR experiment and therefore allowing us to compare the reactivity of each analog to the reactivity of the Martian surface.

To detect oxidation of the carbon species (organic solution or CH_4), gas phase CO_2 production was monitored over a 72 h time period. CO_2 is the complete oxidation product of all organic species, including CH_4 , and the quantification of CH_4 oxidation by measurement of evolved CO_2 has commonly been performed (Kiyosu and Krouse, 1989; Kiyosu and Imaizumi, 1996). However, it is possible that other gas-phase oxidation products were formed in the headspace. Therefore, formaldehyde (CH_2O), an intermediate oxidation product of CH_4 , was also monitored in selected experiments to determine if there was any incomplete oxidation occurring.

2. Experimental methods

2.1. Sample preparation

 TiO_2 (anatase) was synthesized and complexed with H_2O_2 as described in Quinn and Zent (1999). Carefully synthesizing TiO_2 , rather than purchasing the material or using natural samples, allowed the chemical state and reactivity of the surface to be carefully controlled and also guaranteed the sample was free of microbial, organic, or other chemical contaminants. It was determined by Quinn and Zent (1999) that calcination for 4 h at 250 °C results in the removal of molecular H_2O from the sample but leaves the majority of surface hydroxyl groups intact. They found this fully hydroxylated sample was able to mimic the Viking LR results better than a partially dehydroxylated sample (a result of higher temperature calcination).

Peroxide was complexed with the TiO₂ mineral surface by suspending samples of calcined TiO₂ in freshly prepared 1% H₂O₂ solution for 30 min. There was a sudden and dramatic color change from white to yellow, which indicated the formation of the $TiO_2 \cdot H_2O_2$ complex (Munuera et al., 1980). The samples were then rinsed with distilled H₂O and filtered to remove excess, unbound H₂O₂ from the mineral complex (Quinn and Zent, 1999). As we followed the same experimental procedure outlined by Quinn and Zent (1999), we assume the $TiO_2 \cdot H_2O_2$ sample we synthesized has similar properties as they report, namely, the Brunauer–Emmett–Teller (BET) specific surface area (SSA_{BET}) and H_2O_2 coverage of this material are $2.08 \times 10^5 \text{ m}^2 \text{ kg}^{-1}$ and 7.2×10^{17} molecules m⁻², respectively. Using scanning electron microscopy (SEM), particle sizes were found to range from ~ 1 to 10 μ m, with an average particle diameter of \sim 5 μ m. After synthesis, the $TiO_2 \cdot H_2O_2$ was immediately transferred to a N₂-filled glove bag. After a brief drying period to remove most adsorbed H₂O, 0.1 g portions of the sample were placed into 8.5 cm³ vials that had been sterilized using an autoclave.

JSC-Mars-1 was obtained from Dr. Carlton Allen of Lockheed Martin Space Mission Systems & Services (Houston, TX). The sample was the sub-mm size fraction of a palagonitic tephra collected from the saddle between Mauna Loa and Mauna Kea volcanoes on the island of Hawaii (Allen et al., 1998). The material was mechanically ground with a mortar and pestle in order to increase the homogeneity of the sample and decrease the average particle size to be more representative of the fine-grained, mechanically weathered dust on the Martian surface. Using SEM, particle sizes were found to range from ~1 to 10 µm with an average particle diameter of ~5 µm and the *SSA*_{BET} was measured to be $1.00 \times 10^5 \text{ m}^2 \text{ kg}^{-1}$ (measurement by Material Synergy, Oxnard, CA). The JSC-Mars-1 sample was weighed into 0.5 g portions and placed into sterilized 8.5 cm³ vials. Hydrogen peroxide (30% by volume, 0.5 mL) was added to the appropriate vials.

Sodium perchlorate (NaClO₄, Sigma Aldrich, >98%) and magnesium perchlorate hexahydrate (Mg(ClO₄)₂ · 6 H₂O, Sigma Aldrich, 99%) were used without modification. A given perchlorate salt was weighed into 0.5 g portions which were added to 8.5 cm³ vials.

After the reagents were added, the vials were immediately transferred to a N₂-filled glove bag. The vials were sealed with screw-topped caps with rubber septa while inside the N₂-filled glove bag in order to minimize atmospheric CO₂ contamination. The vials were stored in the dark at 3 °C for 48 h prior to the initial measurement and also between analyses.

2.2. Headspace analysis

An initial headspace analysis prior to addition of the organic solution or CH₄ was performed to verify that no atmospheric

contamination or sample outgassing had occurred. Analysis of CO₂ in the vial headspace was performed by gas chromatography (GC). A 1.0 cm³ sample of the headspace was extracted using a gas-tight syringe and injected into an 8610C SRI Gas Chromatograph equipped with a PORAPAK Q 6 ft \times 0.085 in. ID column. A thermal conductivity detector (TCD) was used to detect CO₂ and helium was used as the carrier gas. A four level CO₂ calibration was done using 1.0% and 5.0% CO₂ gas standards (Alltech). Analysis of CO₂ in the vial headspace was performed 24, 48, and 72 h after the addition of the organic solution or CH₄. Two measurements were taken of each vial at each analysis and averaged, and error was calculated as the standard deviation of the two measurements. The data were corrected for the CO₂ removed from the vial during the previous headspace measurements. The same chromatography column and procedure was also used to monitor formaldehyde in select experiments.

2.3. Addition of organic compounds or CH₄

Immediately after the initial measurement at time (t)=0 h, either 1.0 cm³ of 630 Torr 99.99% CH₄ (Alltech) or 0.5 mL of an equimolar solution of DL-alanine (Sigma, 99% purity), glycine (Sigma, > 99% purity), formic acid (Sigma, > 97% purity), glycolic acid (Aldrich, 99% purity), and lactic acid (Sigma, 85–90% purity) was added to the vial with a gas-tight syringe. The total molarity of the organic solution was 0.25 M and the pH was adjusted to 8.0 with KOH before the solution was added to the appropriate vials. This aqueous solution of five organic species is similar to the solution used in the Viking LR experiment and will subsequently be referred to as the "organic solution".

2.4. Experimental controls

The contents of all vials including controls are listed in Table 1. One series of vials (A, E, J, M) contained both the oxidizing analog (TiO₂ · H₂O₂, JSC-Mars-1+H₂O₂, or perchlorate salt) and a carbon source (either organic solution or CH₄). A series of control vials (B, F, K, N) contained the oxidizing analog but no organic solution or CH₄. Instead, H₂O was added in place of the organic solution and N₂ gas was injected in place of CH₄. These controls were performed in order to determine if atmospheric CO₂ was contaminating the headspace or if there was any organic

Table 1

Description of the contents of all vials used in the experiments. In the text, the subscript "org" or "meth" is used to denote if the vial series contained the organic solution (or corresponding control) or CH_4 (or corresponding control).

Abbreviation	Vial contents
A _{org} /A _{meth} B _{org} /B _{meth}	$TiO_2\cdot H_2O_2 + organic \ solution/CH_4 \\ TiO_2\cdot H_2O_2 + H_2O/N_2$
C _{org} /C _{meth}	TiO ₂ +organic solution/CH ₄
D _{org} /D _{meth}	Organic solution/CH ₄ only
Eorg/E _{meth}	JSC-Mars-1+ H_2O_2 +organic solution/CH ₄
Forg/F _{meth}	JSC-Mars-1+ H_2O_2 + H_2O/N_2
Gorg/G _{meth}	JSC-Mars-1+organic solution/CH ₄
Horg/H _{meth}	H_2O_2 +organic solution/CH ₄
Iorg/I _{meth}	Organic solution/CH ₄ only
Jorg/Jmeth	NaClO ₄ +organic solution/CH ₄
Korg/K _{meth}	NaClO ₄ +H ₂ O/N ₂
Lorg/L _{meth}	Organic solution/CH ₄ only
M _{org} /M _{meth}	$Mg(ClO_4)_2$ +organic solution/CH ₄
N _{org} /N _{meth}	$Mg(ClO_4)_2$ + H_2O/N_2
O _{org} /O _{meth}	Organic solution/CH ₄ only

а

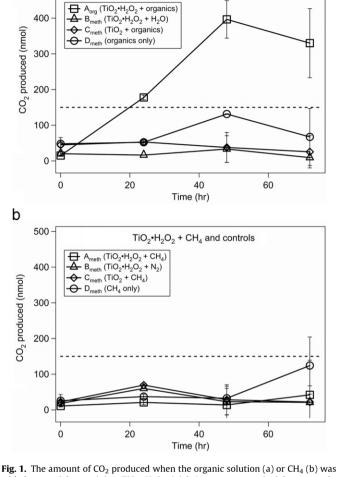
500

contamination in the sample or vial. Another series of controls (C and G) contained a mineral (TiO₂ and JSC-Mars-1, respectively) and carbon source (organic compounds or CH₄) but no added oxidant (H_2O_2). Control H contained oxidant (H_2O_2) and a carbon source (organic solution or CH₄) but no mineral. These controls were performed in order to understand the relative importance of the mineral and the oxidant in the oxidation process. Lastly, a series of controls (D, I, L, O) contained only the carbon source (organic solution or CH₄). These were used to determine if any oxidation was occurring which was unrelated to the either the mineral or oxidant; for example, due to chemical contamination, photolysis or microbial metabolization.

In the remainder of this paper, the subscript "org" will follow the vial letters given in Table 1 if the vial series being discussed contained organic solution (or corresponding controls) and the subscript "meth" will follow the letter if CH_4 was added (or corresponding control) (e.g., A_{meth} represents a vial that contains $TiO_2 \cdot H_2O_2$ and CH_4 , whereas O_{org} is a control containing organic solution only, etc.).

3. Results

3.1. $TiO_2 \cdot H_2O_2$ experiments

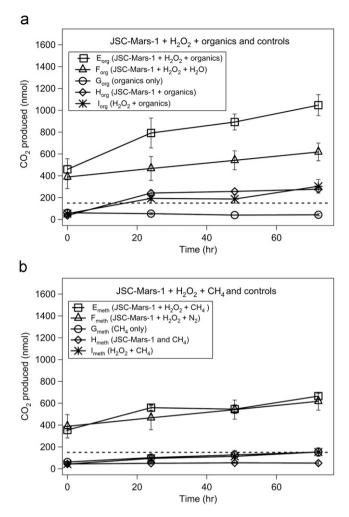

At t=0 h, prior to the addition of the organic solution, there was very little CO₂ in all vials A_{org}, B_{org}, C_{org}, or D_{org} (less than 50 nmol). When the organic solution was added to the 0.1 g TiO₂ · H₂O₂ (vial A_{org}), CO₂ was produced at a rate of a few hundred nanomoles per day for the first few days, with the CO₂ production rate leveling off after 48 h (Fig. 1a). None of the controls (B_{org}, C_{org}, and D_{org}) contained appreciable amounts of CO₂ even after 72 h, confirming that little chemical, biological, or atmospheric contamination was occurring and also that the TiO₂ · H₂O₂ complex, not just the TiO₂ mineral, was responsible for the observed oxidation.

The amount of CO₂ produced per gram of TiO₂ · H₂O₂ sample upon addition of the organic solution is very similar to previous studies (Quinn and Zent, 1999). In our study, 4×10^2 nmol of CO₂ had been produced by oxidation of the organic molecules after 72 h. Quinn and Zent measured 4.5×10^2 nmol CO₂ released from the same sample mass after 72 h, suggesting that our sample probably has similar BET surface area and peroxide coverage.

Before CH₄ was added to the second series of vials (A_{meth}, B_{meth}, C_{meth} , D_{meth}), there was less than 50 nmol of CO_2 present at t=0. However, after CH₄ was added, no additional CO₂ was produced during the 72 h experiment (Fig. 1b). The CO₂ present in vial A_{meth} $(TiO_2 \cdot H_2O_2 \text{ and } CH_4)$ after 72 h was no greater than that in any of the control vials (B_{meth}, C_{meth}, or D_{meth}), signifying that no CH₄ was oxidized to CO₂ within the detection limit of the TCD. The slight increase in control vial D_{meth} (CH₄ only) at t=72 h is likely due to a leak in the septum causing atmospheric CO₂ contamination and not due to oxidation of CH₄. In Fig. 1 through 3, the horizontal dashed line at 150 nmol CO₂ represents the current concentration of CO₂ in Earth's atmosphere, confirming that the CO₂ in some control vials is approaching ambient atmospheric mixing ratios due to slow leakage, but also that significantly more CO₂ is being produced by oxidation of the organic solution than could result from atmospheric contamination.

3.2. JSC-Mars- $1+H_2O_2$ experiments

Unlike the vials containing $TiO_2 \cdot H_2O_2$, there was significant CO_2 in the headspace of the vials containing JSC-Mars-1 and H_2O_2 at t=0 (even before the organic solution was added). Specifically,



TiO2•H2O2 + organic compounds and controls

Fig. 1. The amount of CO₂ produced when the organic solution (a) or CH₄ (b) was added to a vial containing TiO₂ · H₂O₂ (vial A, open squares). Other controls, described in Table 1, are also shown. The only vial in which any CO₂ was produced was that which contained TiO₂ · H₂O₂ and organic solution. None of the vials to which CH₄ was added produced any CO₂ during the 72 h experiment. The dashed line at 150 nmol CO₂ represents the current concentration of CO₂ in Earth's atmosphere.

as seen in Fig. 2a, vials $E_{\rm org}$ and $F_{\rm org}$ contained $4.2\times 10^2\,nmol$ of CO₂ at t=0 h. This is most likely due to the oxidation by H₂O₂ of organic compounds inherent to the JSC-Mars-1 sample. It is not surprising that this analog soil contains organic matter, as JSC-Mars-1 is an environmental sample and was not chemically treated prior to these experiments. However, after the organic solution was added, there was much more additional CO₂ produced in vial Eorg (JSC-Mars-1+H2O2+organic solution) than in control vial F_{org} (JSC-Mars-1+H₂O₂+H₂O). This suggests that the organic solution was being rapidly oxidized in addition to the organic compounds contained in JSC-Mars-1. There was also a small amount of CO2 produced in vial Horg (JSC-Mars-1+organic solution) and Iorg (H₂O₂+organic solution). However, when both the mineral analog (JSC-Mars-1) and the oxidant (H_2O_2) were present, more oxidation of the organic solution occurred than when only one of these species was present, suggesting that there is an interaction between the surface and H₂O₂ which enhances oxidation of the organics. These results showing that H_2O_2 is a stronger oxidant in the presence of minerals are consistent with the results of Levin and Straat (1981).

The only vial that did not contain any CO_2 even after 72 h was control vial G_{org} (organic solution only), confirming that oxidation

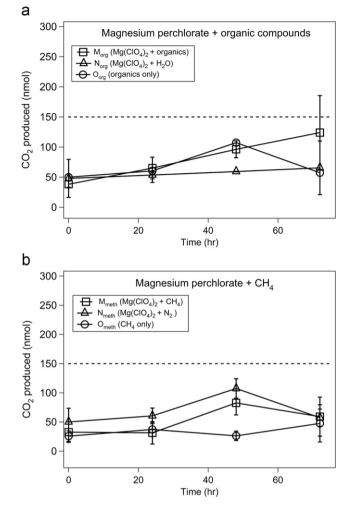


Fig. 2. The amount of CO₂ produced when the organic solution (a) or CH₄ (b) was added to a vial containing JSC-Mars-1 and H₂O₂. Other controls, described in Table 1, are also shown. The large amounts of CO₂ present at t=0 (before any organic solution or CH₄ was added) in vials E_{org} and F_{org} (as well as E_{meth} and F_{meth}) are due to oxidation by H₂O₂ of organic compounds contained in the JSC-Mars-1 sample. Although JSC-Mars-1 and H₂O₂ were able to oxidize the added organic solution, no CH₄ oxidation was observed. This statement is based on the fact that the E_{meth} vials (squares) contained no more evolved CO₂, within error, than the F_{meth} control vials (open triangles) to which only N₂ was added.

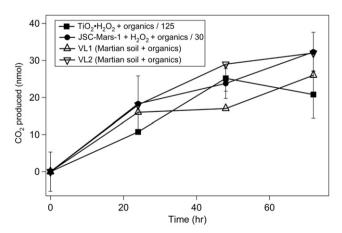
of the organic compounds due to chemical or biological contamination was not occurring.

As expected, there was also significant $(3.7 \times 10^2 \text{ nmol}) \text{ CO}_2$ in both vials that contained JSC-Mars-1 and H_2O_2 (E_{meth} and F_{meth}) before CH₄ was injected (t=0 h) (see Fig. 2b). However, the addition of CH₄ to the JSC-Mars-1 and H₂O₂ in vial E_{meth} did not result in the production of any CO₂ beyond that produced in control F_{meth} (to which no CH₄ was added). This indicates that that no CH₄ was oxidized to CO₂ within the detection limit of the TCD. The slight increase in CO₂ in several of the controls (G_{meth} and I_{meth}) is likely due to the slow leakage of atmospheric CO₂ into the vial which was discussed above.

When the headspace of vial E_{meth} (JSC-Mars-1+H₂O₂+CH₄) was sampled, the observation time was extended past the elution of the CO₂ peak to allow for detection of formaldehyde (H₂CO). We chose to monitor for H₂CO in this particular experiment type as the most total CO₂ was produced during this experiment. However, no H₂CO was detected in the headspace within the limit of detection of the GC instrument. This suggests that there was no complete or incomplete oxidation of CH₄ occurring in the vial.

Fig. 3. CO_2 produced when the organic solution (a) or CH_4 (b) was added to $Mg(ClO_4)_2$. Neither the organic solution nor CH_4 were oxidized to CO_2 to any measurable extent (open squares).

3.3. Perchlorate experiments


As seen in Fig. 3a and b, when either the organic solution or CH_4 were added to $Mg(ClO_4)_2$ no more CO_2 was produced in the vials than when only H₂O or N₂ were injected. Although some vials appeared to have a slight leak to the atmosphere, comparison with the control vials indicates that no CO₂ was produced within the detection limit of the TCD. NaClO₄ behaved similarly; no detectable CO₂ was observed after the addition of the organic solution or CH₄ (not shown). To the best of our knowledge, the oxidation of CH₄ by perchlorate salts has not been previously studied. The oxidation of a wide range of organic compounds by perchloric acid ($HClO_4$) was studied by Martinie and Schilt (1976). Even under elevated reaction temperatures (200 °C), several organic molecules, including the amino acids glycine and alanine, were able to partially survive oxidation by HClO₄. It is therefore not surprising that the organic solution of amino acids and sugars was not directly oxidized by perchlorate salts in these low temperature studies. It is even less surprising that CH₄, a low reactivity molecule, was not oxidized by perchlorate salts.

4. Discussion

To compare the reactivity of the samples used in this study to the reactivity of the Martian surface, we first normalize CO_2 production with respect to soil mass. As only TiO₂·H₂O₂ and JSC-Mars-1+H₂O₂ oxidized the organic solution, only these two analogs are considered in this comparison. The Viking LR experiment utilized 0.5 cm³ of soil, corresponding to a mass of 0.83 g assuming a soil density (ρ_{soil}) of 1650 kg m⁻³ (Feldman et al., 2004). In our experiments and presumably in the Viking LR experiments the oxidant (H₂O₂) was the stoichiometric limiting reagent (Levin and Straat, 1981), enabling a reasonable comparison. Additionally, the temperature of the mineral samples during the organic oxidation reaction in our study and in the Viking LR experiment is fairly similar: 3 °C in this study vs. ~10 °C inside the experimental cells of the Viking Landers (Levin and Straat, 1981).

In Fig. 4 we normalize the CO_2 produced from vials A_{org} (TiO₂ \cdot H₂O₂+organic solution) and E_{org} (JSC-Mars-1+H₂O₂+ organic solution) to a 0.83 g sample mass and compare our oxidation rates to the results of the LR experiment onboard Viking Landers 1 and 2 (VL1 and VL2). For each of the experimental analogs, we divide the nmol of CO₂ produced by organic oxidation by a constant to quantify the enhanced reactivity of the analogs relative to Martian soil. It can be seen in Fig. 4 that $TiO_2 \cdot H_2O_2$ is about 125 times more oxidizing than the Martian regolith, and JSC-Mars-1 combined with H₂O₂ is about 30 times more oxidizing. Quinn and Zent (1999) also found TiO₂ · H₂O₂ to be about 100 times more reactive than the Martian surface with respect to the organic solution, and suggested that this two order of magnitude difference could be due to the 1% abundance of TiO₂ in the Martian regolith (Clark et al., 1977). The $30 \times$ greater reactivity of the JSC-Mars-1+H₂O₂ sample could be due to mineralogical differences between this palagonitic material and the actual Martian soil, or due to the greater H₂O₂ content of our sample.

Despite the large difference in the magnitude of reactivity between the oxidative analogs studied $(TiO_2 \cdot H_2O_2)$ and JSC-Mars-1+H₂O₂) and the Martian regolith, the overall reactivity of the analogs appears to be similar to that observed by VL1 and VL2, namely, the oxidation of the organic solution proceeds via a rapid initial release of CO₂ followed by a slower, prolonged release. The diminished rate of production of CO₂ is perhaps due to the decrease in available organic reagent.

Fig. 4. Comparison of the oxidation rates of the organic solution by the $TiO_2 \cdot H_2O_2$ and JSC-Mars-1+H₂O₂ analogs (this work) and by the Martian surface during the Viking LR experiment (Quinn and Zent, 1999). All data is normalized to a 0.85 g sample mass. For the two lab analogs, the CO₂ produced by organic oxidation is divided by a constant to determine the enhanced reactivity of the analogs relative to the Martian surface. It can be seen that $TiO_2 \cdot H_2O_2$ is about 125 times more oxidizing than the Martian soil, and JSC-Mars-1+H₂O₂ is about 30 times more oxidizing. Although both analogs used in this study are more reactive than the actual Martian regolith, the overall behavioral trend (rapid initial release followed by a slower, prolonged increase) is similar.

Although both of these systems (TiO₂ · H₂O₂ and JSC-Mars-1+ H₂O₂) were able to oxidize the organic solution to CO₂, no CO₂ was observed to be produced as a result of CH₄ oxidation. As a result, only an upper-limit reaction coefficient for the oxidation of CH₄ by these mineral surfaces can be determined. This reaction coefficient (α) is defined as the fraction of collisions of CH₄ with the surface of the mineral that result in complete oxidation to CO₂. The perchlorate salts did not evolve any CO₂ from CH₄, nor did they oxidize the organic solution to any measureable extent. However, as we were not able to perform BET surface area analysis on the perchlorate salts, values of α could not be determined for CH₄ oxidation by these salts. Therefore, in the following section we only determine upper limit values of α for CH₄ on TiO₂ · H₂O₂ and JSC-Mars-1+H₂O₂.

Fuchs and Sutugin (1971) show α can be calculated by Eq. (1):

$$\frac{J_{\text{net}}}{J_{\text{total}}} = \frac{0.75\alpha(1+Kn)}{Kn^2 + Kn + 0.283Kn\alpha + 0.75\alpha}$$
(1)

where J_{net} is the *net* flow of CH₄ to the entire mineral surface area (i.e., the flow that either sticks or reacts) and J_{total} is the *total* flow to the mineral surface area assuming the system is in the continuum regime. In this regime, the Knudsen number (*Kn*), the ratio of the mean free path of a gas molecule (λ) to the particle radius (R_p), is small (<1) and these conditions subsequently dictate the properties of molecular transport to the surface of a particle. As λ is 79 nm at atmospheric pressure and the mineral particle diameters range from 1 to 10 µm, *Kn*«1 and the experimental system is in the continuum regime. Eq. (2) was used to find the following:

$$J_{\text{total}} = \frac{D_{\text{CH}_4}}{R_{\text{p}}} (c_{\infty} - c_{\text{s}}) SA \tag{2}$$

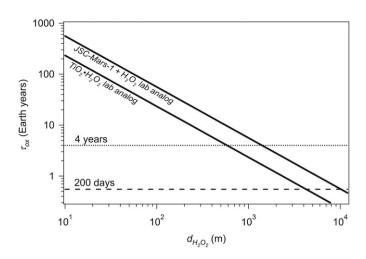
where J_{total} is the total flow (molecules s⁻¹) toward the entire mineral surface area present in the vial assuming the system is in the continuum regime, D_{CH_4} is the diffusivity of CH_4 inside the vial, c_{∞} and c_{s} are the concentrations of CH₄ far away from the particle and on the surface of the particle, respectively (Seinfeld and Pandis, 1998), and SA is the total surface area present in the vial. Based on SEM images of $TiO_2 \cdot H_2O_2$ and JSC-Mars-1, R_p is 2.5 $(\pm 1) \mu m$ on average for both minerals. The diffusivity of CH₄ at room temperature is $0.2 \text{ cm}^2 \text{ s}^{-1}$ and was calculated using $D_{CH_{4}} = 0.5 v \lambda$, where v is the mean molecular speed (m s⁻¹) of CH₄ at a temperature *T* given by the Maxwell–Boltzmann distribution of gas velocities, $v = (8RT/\pi M_w)^{1/2}$ (Seinfeld and Pandis, 1998). Although no oxidation of CH₄ was observed, we assume we are simply measuring an upper limit of the heterogeneous reaction that is occurring; thus, c_s is 0 and c_{∞} is the bulk gas phase concentration of CH₄ in the vial $(2.4 \times 10^{18} \text{ molecules cm}^{-3})$. The total surface area (SA) for each mineral was found by multiplying the mineral's BET specific surface area (SSA_{BET}) $(m^2 kg^{-1})$ by the sample mass (kg). Given the error in the estimation of $R_{\rm D}$ in the mineral sample, J_{total} is equal to 4×10^{26} ($\pm 2 \times 10^{26}$) molecules s⁻¹ for TiO₂ · H₂O₂ and 1 × 10²⁷ (\pm 5 × 10²⁶) molecules s⁻¹ for JSC-Mars- $1+H_2O_2$, with the difference due to the larger sample mass, and thus total surface area, of JSC-Mars-1.

Next, an upper limit of the net flow of CH₄ to all mineral particles in the vial, or the upper limit of total CH₄ that is oxidized to CO₂, J_{net} , can be derived from the detection limit of the experiment. The smallest amount of CO₂ that could be reasonably detected by the TCD is 7.7 nmol. As not even this small amount of CO₂ was present in the 1.0 cm³ sample of vial headspace injected into the GC during the final measurement, less than 65.5 nmol of total CO₂ were present in the 8.5 cm³ vial by the end of the 72 h experiment (7.7 nmol cm⁻³ × 8.5 cm³=65.5 nmol total). However, since there was leakage of atmospheric CO₂ in some vials, a more conservative upper limit is 150 nmol (150 nmol per

8.5 cm³ corresponds to the mixing ratio of CO₂ in Earth's atmosphere). If more than this amount of CO₂ was formed in the vial headspace, we were certain to detect it. As less than 150 nmol CO₂ was produced after 72 h, $J_{net} < 3.5 \times 10^{11}$ CH₄ molecules s⁻¹ assuming a 1:1 reaction stoichiometry between CH₄ and CO₂. From Eq. 1, α is less than $\sim 3.7 \times 10^{-17}$ for TiO₂ · H₂O₂ and less than $\sim 1.6 \times 10^{-17}$ for JSC-Mars-1+H₂O₂.

5. Martian implications

The upper limit parameter α can be used to determine the kinetic importance of heterogeneous CH₄ oxidation on Mars. To quantify such CH₄ loss, first we approximate the CH₄ flux, F_{CH_4} (molecules m⁻² s⁻¹), to any surface on Mars. As the atmospheric pressure on Mars is low, heterogeneous processes are occurring in the kinetic/molecular regime and so F_{CH_4} can be found using


$$F_{\rm CH_4} = \frac{1}{4} v n_{\rm CH_4} \tag{3}$$

where n_{CH_4} is the number density of CH₄ on Mars (molecules m⁻³). On the surface of Mars, the average observed CH₄ mixing ratio of 10 ppbv corresponds to $n_{\text{CH}_4} = 2.2 \times 10^{15}$ molecules m⁻³, yielding an approximate value of F_{CH_4} of 3×10^{17} molecules m⁻² s⁻¹ at 210 K. We can then estimate a lower limit oxidation timescale, τ_{ox} , over which a column of CH₄ could be permanently removed from the atmosphere via oxidation by H₂O₂ complexed to mineral surfaces:

$$\tau_{\rm ox} = \frac{N_{\rm CH_4}}{\alpha F_{\rm CH_4} SSA_{\rm soil} \rho_{\rm soil} d_{\rm H_2O_2}} \tag{4}$$

where N_{CH_4} is the CH₄ column abundance above 1 m² of regolith (molecules m⁻²), *SSA*_{soil} and ρ_{soil} are the specific surface area (m² kg⁻¹) and density (kg m⁻³) of the Martian soil, respectively, and $d_{\text{H}_2\text{O}_2}$ is the depth (m) of the surface soil layer that contains adsorbed or complexed H₂O₂. A uniform mixing ratio of 10 ppbv at Martian surface gravity and pressure conditions corresponds to $N_{\text{CH}_4} = 2.2 \times 10^{19}$ CH₄ molecules m⁻². We use a value for ρ_{soil} of 1650 kg m⁻³ (Feldman et al., 2004) and a value for *SSA*_{soil} of 1.7×10^4 m² kg⁻¹ (Ballou et al., 1978). We assume that this entire specific surface area is available to oxidize CH₄ and the H₂O₂.

The depth of Martian soil that contains H₂O₂ is a difficult parameter to constrain, as the H₂O₂ production mechanism(s), flux from the atmosphere to the surface, rates of adsorption and destruction upon interaction with the soil, and lifetime in the subsurface have only been estimated or theoretically calculated. However, as the gas chromatograph-mass spectrometer onboard Viking Lander 2 failed to detect any organic compounds in a sample collected at a depth of 10 cm (Biemann, 1979), it seems likely that the layer of strongly oxidizing soil extends at least 10 cm below the surface. Bullock et al. (1994) found that even if the lifetime of H_2O_2 in the soil is long (10⁵ years), little H_2O_2 will penetrate below a depth of 3 m due to significant adsorption of H₂O₂ to soil grains. Impact gardening, aeolian activity, or triboelectric processes could overturn the surface of the regolith and provide a mechanism for H₂O₂ to reach greater depths. However, it is highly unlikely that these processes could turn over meters of Martian soil every few years. It is therefore difficult to constrain a reasonable maximum value for $d_{H_2O_2}$, although at some depth the oxidation of CH₄ molecules will be limited by the timescale needed to diffuse to such depths. For example, it would take almost 3 years for CH₄ to reach depths of 100 m (Formisano et al., 2004; Gough et al., 2010), so values of $d_{\rm H_2O_2}$ greater than this are unrealistic. However, we do not specifically consider the

Fig. 5. The lifetime of a CH₄ column in the Martian atmosphere due to heterogeneous oxidation by H₂O₂ adsorbed to soil (τ_{ox}) as a function of soil depth ($d_{H_2O_2}$). Results are shown for both experimentally determined values of α : CH₄ on TiO₂ · H₂O₂ (lower diagonal line) and CH₄ on JSC-Mars-1+H₂O₂ (upper diagonal line). The horizontal dotted line represents τ_{ox} = 4 years, which is the upper limit lifetime consistent with the ground-based observations of Mumma et al. (2009). The horizontal dashed line corresponds to τ_{ox} = 200 days, which is the CH₄ lifetime needed to explain the observed atmospheric variability (Lefevre and Forget, 2009). Very large depths of oxidized soil ($d_{H_2O_2}$ > 500 m) are needed for the CH₄ lifetime to be consistent with observations of the Martian atmosphere.

diffusion time of CH4 through the regolith during this calculation of τ_{ox}

In Eq. (4), the reaction coefficient, α , is the upper limit value we have experimentally determined for either TiO₂·H₂O₂ ($\alpha < 3.7 \times 10^{-17}$) or JSC-Mars-1+H₂O₂ ($\alpha < \sim 1.6 \times 10^{-17}$). In Fig. 5 we plot the CH₄ lifetime (τ_{ox}) as a function of the depth of the soil layer that contains H₂O₂ ($d_{H_2O_2}$) using the two experimentally determined, upper limit values for α . It can be seen in Fig. 5 that τ_{ox} decreases with increase in $d_{H_2O_2}$. The horizontal dotted and dashed lines in Fig. 5 correspond to CH₄ lifetimes of 4 years and 200 days, respectively. These lines represent the two different CH₄ lifetimes which have been proposed: the ground-based observations of Mumma et al. (2009) are consistent with a CH₄ lifetime of 4 years or less; however, Lefevre and Forget (2009) find these observations could actually suggest a lifetime of about 200 days.

In the case of both analogs, it can be seen in Fig. 5 that the CH_4 lifetime is very long for any reasonable oxidant depth. Even in the case of the more reactive analog $(TiO_2 \cdot H_2O_2)$, more than 500 m of oxidized soil are required in order to remove CH_4 from the atmosphere in time scales of 4 years or less. At these depths, however, subsurface diffusion would limit the kinetics of CH_4 loss and therefore it is unlikely that H_2O_2 adsorbed to soil grains could be responsible for the rapid CH_4 loss which has been recently reported.

We have no way to accurately quantify the decreased reactivity of the Martian regolith toward CH_4 relative to the laboratory analog. However, the soil on Mars is likely to be less reactive than either of these analog materials as the analogs oxidized the organic solution much more rapidly than the actual Martian surface oxidized the organics during the LR experiment. Therefore, these upper limit α values are certainly an overestimation which will yield lower limit lifetimes. Additionally, the heterogeneous oxidation of CH_4 would most likely occur more slowly on Mars than in our study due to the lower temperatures present on the Martian surface. This correlation between reaction kinetics and temperature is predicted by both collision theory and transition state theory (Finlayson-Pitts and Pitts, 2000) and could increase the CH_4 lifetime even further beyond what could be relevant to the Martian CH_4 cycle.

It is important to point out that we assume CH₄ loss on Mars would be constant as a function of time over the entire calculated lower limit lifetime (τ_{ox}), which represents a different behavior than the decreased reactivity observed after a few days in our organic oxidation experiments. This plateauing, observed even more dramatically in similar experimental studies by Levin and Straat (1981) and Quinn and Zent (1999), is likely due to the large excess of organic molecules beginning to deplete the oxidant (H_2O_2) . In the case of CH_4 oxidation on Mars, we do not believe the reaction would level off after a few days, as the oxidant (perhaps H₂O₂) would not be the limiting reagent. Estimates of soil H₂O₂ content on Mars vary from 1.4×10^{23} H₂O₂ molecules m⁻³ (Bullock et al., 1994) to 5.8×10^{26} H₂O₂ molecules m⁻³ (Levin and Straat, 1981), indicating there is enough oxidant in less than 200 µm depth of soil, at least stoichiometrically, to oxidize the 2.2e19 molecules of CH₄ in a 1 m² atmospheric column above this regolith, assuming a 10 ppbv mixing ratio. Therefore, we do not believe that H₂O₂ would be depleted to any relevant extent during the reported 4 year (or shorter) CH₄ lifetime and thus the oxidation rate would not be expected to decrease.

We also consider the possibility that H_2O_2 adsorbed to mineral dust aerosol in the atmosphere could act as a CH₄ sink. However, even at the high optical depths (OD) present during dust storms, the surface area of mineral dust in the Martian atmosphere is relatively small. For example, Martin (1995) calculated that a localized dust storm monitored by the Viking orbiter (OD=0.83) resulted in an atmospheric dust enhancement of 18,000 kg km⁻², corresponding to a 6 µm layer of dust if compacted. Even if this atmospheric mineral aerosol was coated with H_2O_2 to a greater extent than the regolith material due to condensation of electrostatically produced oxidant (Atreya et al., 2006; Delory et al., 2006), it can be seen in Fig. 5 that this effective depth is many orders of magnitude too small to impact atmospheric CH₄ concentrations on a seasonal time scale.

It is therefore unlikely that H₂O₂ adsorbed to mineral grains in the Martian regolith or atmosphere is responsible for the rapid CH₄ destruction reported by Mumma et al. (2009) or the spatial and temporal variability observed by Geminale et al. (2008) and Fonti and Marzo (2010). As a CH₄ lifetime of less than 4 years is required to cause this reported variability (Mumma et al., 2009), some other loss process is likely occurring. It has been suggested that CH_4 is not being destroyed by H_2O_2 , but rather by $\cdot OH$ formed during mineralogical processing of H₂O₂. Processes such as the Fenton reaction, which oxidizes Fe^{2+} to Fe^{3+} while reducing H_2O_2 to ·OH, could be occurring on or in the iron-rich Martian regolith. Other proposed oxidants include superoxide (O_2^-) ions (Yen et al., 2000), iron (IV) salts (Tsapin et al., 2000), or peroxonitrite compounds (Plumb et al., 1989). Incident UV radiation could play a role in the destruction of CH₄ directly through a surfaceenhanced destruction process or indirectly through photochemical formation of oxidants on surfaces of minerals or ices. Perhaps chlorine species such as the reactive intermediate anionic chlorine oxides (ClO⁻, ClO⁻, and ClO⁻) exist in the regolith and could destroy organics or methane. It is also possible that the reactive components of the regolith or the mechanisms occurring have not yet been identified. Either way, more work must be done towards identifying chemical species or minerals that are reactive towards CH₄ over very short time scales (less than 4 years).

6. Conclusions

We have performed a series of experiments analyzing the reactivity of several oxidizing analogs toward CH_4 . Perchlorate salts and H_2O_2 are thought to exist on Mars although their geographic distribution is not known. These species, especially peroxides, have

been proposed to rapidly destroy CH₄, possibly resulting in a CH₄ lifetime short enough to explain the observations of Mumma et al. (2009) (less than 4 years) and the model results of Lefevre and Forget (2009) (200 days). However, we have shown that ClO_4^- salts are unreactive towards both CH₄ and the organic compounds used during the Viking LR experiment and are thus very unlikely to destroy CH₄ over these time scales on Mars. Hydrogen peroxide, complexed with TiO₂ and also added to JSC-Mars-1 soil analog, was able to oxidize the Viking organic solutions to CO₂ with greater reactivity than the Martian surface. However, even the most reactive oxidative analog, $TiO_2 \cdot H_2O_2$, did not oxidize CH₄ to CO₂ during a 72 h experiment within the detection limit of the GC instrument used. A calculated upper limit reaction coefficient, α , is less than $\sim 3.7 \times 10^{-17}$ for TiO₂ · H₂O₂ and less than $\sim 1.6 \times 10^{-17}$ for JSC-Mars-1+H₂O₂. When these experimental results are extrapolated to Martian conditions, the CH₄ lifetimes calculated are too long to be relevant to the Martian CH₄ cycle. Depths of oxidized soil greater than 500 m are needed for the CH₄ lifetime to be consistent with observations of the Martian atmosphere. Moreover, these reactions are likely temperature dependent and will be slower at Martian temperatures.

This study was not a comprehensive study of all possible mineral analogs and all possible H_2O_2 complexation or stabilization mechanisms. However, we have shown that neither ClO_4^- salts nor H_2O_2 alone are likely to be directly responsible for the recently observed rapid destruction and high temporal and spatial variability of atmospheric CH_4 on Mars.

Acknowledgements

This work was supported by NASA Mars Fundamental Research Grant NNX09AN19G. The authors would like to thank Paul Rice of the Nanomaterials Characterization Facility at the University of Colorado for help with the SEM, Tom McCollom for use of his GC and other equipment, Lisa Mahew for her help with the GC, and Miriam Freedman for helpful comments.

References

- Allen, C.C., Jager, K.M., Morris, R.V., Lindstrom, D.J., Lindstrom, M.M., Lockwood, J.P., 1998. Martian soil stimulant available for scientific, educational study. EOS 79, 405–412.
- Atreya, S.K., Mahaffy, P.R., Wong, A.S., 2007. Methane and related trace species on Mars: origin, loss, implications for life, and habitability. Planet. Space Sci. 55 (3), 358–369.
- Atreya, S.K., Wong, A.S., Renno, N.O., Farrell, W.M., Delory, G.T., Sentman, D.D., Cummer, S.A., Marshall, J.R., Rafkin, S.C.R., Catling, D.C., 2006. Oxidant enhancement in Martian dust devils and storms: implications for life and habitability. Astrobiology 6 (3), 439–450.
- Ballou, E.V., Wood, P.C., Wydeven, T., Lehwalt, M.E., Mack, R.E., 1978. Chemical interpretation of Viking Lander 1 life detection. Nature 271 (5646), 644–645.
- Biemann, K., 1979. Implications and limitations of the findings of the Viking organic-analysis experiment. J. Mol. Evol. 14 (1-3), 65–70.
- Boston, P.J., Ivanov, M.V., McKay, C.P., 1992. On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. Icarus 95 (2), 300–308.
- Bullock, M.A., Stoker, C.R., McKay, C.P., Zent, A.P., 1994. A coupled soil atmosphere model of H₂O₂ on Mars. Icarus 107 (1), 142–154.
- Catling, D.C., Claire, M.W., Zahnle, K.J., Quinn, R.C., Clark, B.C., Hecht, M.H., Kounaves, S., 2010. Atmospheric origins of perchlorate on Mars and in the Atacama. J. Geophys. Res. Planets 115, E00E11.
- Chassefiere, E., 2009. Metastable methane clathrate particles as a source of methane to the Martian atmosphere. Icarus 204 (1), 137–144.
- Chastain, B.K., Chevrier, V., 2007. Methane clathrate hydrates as a potential source for Martian atmospheric methane. Planet. Space Sci. 55 (10), 1246–1256.
- Clark, B.C., Baird, A.K., Rose, H.J., Toulmin, P., Christian, R.P., Kelliher, W.C., Castro, A.J., Rowe, C.D., Keil, K., Huss, G.R., 1977. Viking X-ray-fluorescence experiment—analytical methods and early results. Trans. Am. Geophys. Union 58 (8), 829.
- Davila, A.F., Fairen, A.G., Gago-Duport, L., Stoker, C., Amils, R., Bonaccorsi, R., Zavaleta, J., Lim, D., Schulze-Makuch, D., McKay, C.P., 2008. Subsurface formation of oxidants on Mars and implications for the preservation of organic biosignatures. Earth Planet. Sci. Lett. 272 (1–2), 456–463.

- Delory, G.T., Farrell, W.M., Atreya, S.K., Renno, N.O., Wong, A.S., Cummer, S.A., Sentman, D.D., Marshall, J.R., Rafkin, S.C.R., Catling, D.C., 2006. Oxidant enhancement in Martian dust devils and storms: storm electric fields and electron dissociative attachment. Astrobiology 6 (3), 451–462.
- Farrell, W.M., Delory, G.T., Atreya, S.K., 2006. Martian dust storms as a possible sink of atmospheric methane. Geophys. Res. Lett. 33, 21.
- Feldman, W.C., Prettyman, T.H., Maurice, S., Plaut, J.J., Bish, D.L., Vaniman, D.T., Mellon, M.T., Metzger, A.E., Squyres, S.W., Karunatillake, S., et al., 2004. Global distribution of near-surface hydrogen on Mars. J. Geophys. Res. 109 (E9), 13.
- Finlayson-Pitts, B., Pitts, J., 2000. Chemistry of the Upper and Lower Atmosphere. Academic Press, San Diego, CA.
- Fonti, S., Marzo, G.A., 2010. Mapping the methane on Mars. Astron. Astrophys. 512 (A51).
- Formisano, V., Atreya, S., Encrenaz, T. r. s., Ignatiev, N., Giuranna, M., 2004. Detection of methane in the atmosphere of Mars. Science 306 (5702), 1758–1761.
- Fuchs, N., Sutugin, A., 1971. High dispersed aerosols. In: Hidy, G., Brock, J. (Eds.), Topics in Current Aerosol Research (Part 2). Pergamon, New York, NY, pp. 1–200.
- Geminale, A., Formisano, V., Giuranna, M., 2008. Methane in Martian atmosphere: average spatial, diurnal, and seasonal behaviour. Planet. Space Sci. 56 (9), 1194–1203.
- Gough, R.V., Tolbert, M.A., McKay, C.P., Toon, O.B., 2010. Methane adsorption on a Martian soil analog: an abiogenic explanation for methane variability in the Martian atmosphere. Icarus 207 (1), 165–174.
- Hecht, M.H., Kounaves, S.P., Quinn, R.C., West, S.J., Young, S.M.M., Ming, D.W., Catling, D.C., Clark, B.C., Boynton, W.V., Hoffman, J., et al., 2009. Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander site. Science 325 (5936), 64–67.
- Huguenin, R.L., Miller, K.J., Harwood, W.S., 1979. Frost-weathering on Mars experimental evidence for peroxide formation. J. Mol. Evol. 14 (1–3), 103–132.
- Hunten, D.M., 1979. Possible oxidant sources in the atmosphere and surface of Mars. J. Mol. Evol. 14 (1–3), 71–78.
- Hurowitz, J.A., Tosca, N.J., McLennan, S.M., Schoonen, M.A.A., 2007. Production of hydrogen peroxide in Martian and lunar soils. Earth Planet. Sci. Lett. 255 (1–2), 41–52.
- Jakosky, B.M., Nealson, K.H., Bakermans, C., Ley, R.E., Mellon, M.T., 2003. Subfreezing activity of microorganisms and the potential habitability of Mars' polar regions. Astrobiology 3 (2), 343–350.
- Kiyosu, Y., Imaizumi, S., 1996. Carbon and hydrogen isotope fractionation during oxidation of methane by metal oxides at temperatures from 400 to 530 °C. Chem. Geol. 133 (1–4), 279–287.
- Kiyosu, Y., Krouse, H.R., 1989. Carbon isotope effect during abiogenic oxidation of methane. Earth Planet. Sci. Lett. 95 (3–4), 302–306.
- Kok, J.F., Renno, N.O., 2009. Electrification of wind-blown sand on Mars and its implications for atmospheric chemistry. Geophys. Res. Lett. 36, L05202.
- Krasnopolsky, V.A., 1993. Photochemistry of the Martian atmosphere (mean conditions). Icarus 101 (2), 313–332.
- Krasnopolsky, V.A., Maillard, J.P., Owen, T.C., 2004. Detection of methane in the Martian atmosphere: evidence for life? Icarus 172 (2) 537–547.
- Lefevre, F., Forget, F., 2009. Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460 (7256), 720–723.
- Levin, G.V., Straat, P.A., 1981. A search for a non-biological explanation of the Viking Labeled Release life detection experiment. Icarus 45 (2), 494–516.
- Lyons, J.R., Manning, C., Nimmo, F., 2005. Formation of methane on Mars by fluidrock interaction in the crust. Geophys. Res. Lett. 32 (13), 4.
- Madden, M.E.E., Ulrich, S.M., Onstott, T.C., Phelps, T.J., 2007. Salinity-induced hydrate dissociation: a mechanism for recent CH₄ release on Mars. Geophys. Res. Lett. 34 (11), 5.
- Martin, T.Z., 1995. Mass of dust in the Martian atmosphere. J. Geophys. Res. 100 (E4), 7509-7512.

- Martinie, G.D., Schilt, A.A., 1976. Investigation of wet oxidation efficiencies of perchloric-acid mixtures for various organic-substances and identities of residual matter. Anal. Chem. 48 (1), 70–74.
- Max, M.D., Clifford, S.M., 2000. The state, potential distribution, and biological implications of methane in the Martian crust. J. Geophys. Res. 105 (E2), 4165–4171.
- Meslin, P.-Y., Gough, R.V., Lefevre, F., Forget, F. Variability of atmospheric methane induced by adsorption in the regolith. Planet. Space Sci., this issue, doi:10.1016/j.pss.2010.09.022.
- Morris, R.V., Graff, T.G., Ming, D.W., Mertzman, S.A., Bell III, J.F., 2003. Hydrothermal alteration on basaltic Mauna Kea volcano as a template for identification of hydrothermal alteration on basaltic Mars. Lunar Planet. Sci. XXXIV.
- Mumma, M.J., Villanueva, G.L., Novak, R.E., Hewagama, T., Bonev, B.P., DiSanti, M.A., Mandell, A.M., Smith, M.D., 2009. Strong release of methane on Mars in northern summer 2003. Science 323 (5917), 1041–1045.
- Munuera, G., Gonzalezelipe, A.R., Soria, J., Sanz, J., 1980. Photo-adsorption and photo-desorption of oxygen on highly hydroxylated TiO₂ surfaces. 3. Role of H_2O_2 in photo-desorption of O_2 . J. Chem. Soc. Faraday Trans. 1 76, 1535–1546.
- Murakami, T., Banba, T., Jercinovic, M.J., Ewing, R.C., 1989. Formation and evolution of alteration layers on borosilicate and basalt glasses: initial stage. Mater. Res. Soc. Symp. Proc. 127, 65–72.
- Orenberg, J., Handy, J., 1992. Reflectance spectroscopy of palagonite and iron-rich montmorillonite clay mixtures—implications for the surface composition of Mars. Icarus 96 (2), 219–225.
- Oze, C., Sharma, M., 2005. Have olivine, will gas: serpentinization and the abiogenic production of methane on Mars. Geophys. Res. Lett. 32 (10), 4.
- Plumb, R.C., Tantayanon, R., Libby, M., Xu, W.W., 1989. Chemical-model for Viking biology experiments—implications for the composition of the Martian regolith. Nature 338 (6217), 633–635.
- Prieto-Ballesteros, O., Kargel, J.S., Fairen, A.G., Fernandez-Remolar, D.C., Dohm, J.M., Amils, R., 2006. Interglacial clathrate destabilization on Mars: possible contributing source of its atmospheric methane. Geology 34 (3), 149–152.
- Quinn, R., Orenberg, J., 1993. Simulations of the Viking gas-exchange experiment using palagonite and Fe-rich montmorillonite as terrestrial analogs—implications for the surface composition of Mars. Geochim. Cosmochim. Acta 57 (19), 4611–4618.
- Quinn, R.C., Zent, A.P., 1999. Peroxide-modified titanium dioxide: a chemical analog of putative Martian soil oxidants. Origins Life Evol. Biosphere 29 (1), 59–72.
- Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric Chemistry and Physics. John Wiley & Sons, Inc., New York, NY.
- Singer, R.B., 1982. Spectral evidence for the mineralogy of high albedo soils and dust on Mars. J. Geophys. Res 87 (NB12), 159–168.
- Tsapin, A.I., Goldfeld, M.G., McDonald, G.D., Nealson, K.H., Moskovitz, B., Solheid, P., Kemner, K.M., Kelly, S.D., Orlandini, K.A., 2000. Iron(VI): hypothetical candidate for the Martian oxidant. Icarus 147 (1), 68–78.
- Varnes, E.S., Jakosky, B.M., McCollom, T.M., 2003. Biological potential of Martian hydrothermal systems. Astrobiology 3 (2), 407–414.
- Weiss, B.P., Yung, Y.L., Nealson, K.H., 2000. Atmospheric energy for subsurface life on Mars? Proc. Natl. Acad. Sci. USA 97 (4) 1395–1399.
- Yen, A.S., Kim, S.S., Hecht, M.H., Frant, M.S., Murray, B., 2000. Evidence that the reactivity of the Martian soil is due to superoxide ions. Science 289 (5486), 1909–1912.
- Zahnle, K., Freedman, R., Catling, D., 2010. Is there methane on Mars? In: Proceedings of the 41st Lunar and Planetary Science Conference The Woodlands, TX.
- Zent, A.P., McKay, C.P., 1994. The chemical reactivity of the Martian soil and implications for future missions. Icarus 108 (1), 146–157.